up to Schedule & Notes

Transforms with orthogonal bases

Othogonal bases $\langle e_1, e_2 \rangle$ :

$|e_1| = 1$

$|e_2| = 1$

$e_1 \cdot e_2 = 0$

$a = p \cdot e_1$

$b = p \cdot e_2$

$p = a \; e_1 + b \; e_2$

The coordinates, $(a,b)$, of $p$ are its projections onto the basis vectors.

Rotational change of basis

Suppose $p = (a,b)$ in the $\langle e_1, e_2 \rangle$ basis.

What is $p$ written in a different basis, $\langle u, v \rangle$?

(Note that the coordinates of $u$ and $v$ must be written in the same $\langle e_1, e_2 \rangle$ basis as the coordinates of $p$.)

We can think of $p$'s transformation into the $\langle u,v \rangle$ basis as $p$'s projection onto $u$ and $v$:

$p_{uv} = ( p \cdot u, p \cdot v )$

But, writing this as a matrix multiplication:

$\begin{bmatrix} p \cdot u \\ p \cdot v \end{bmatrix} = \begin{bmatrix} \cdots u \cdots \\ \cdots v \cdots \end{bmatrix} \begin{bmatrix} \vdots \\ p \\ \vdots \end{bmatrix}$

So we can think of $p$'s transformation into the $\langle u,v \rangle$ basis as a matrix, $\begin{bmatrix} \cdots u \cdots \\ \cdots v \cdots \end{bmatrix}$ , applied to $p$.

Relation to the classical 2D rotation matrix

Suppose that the $\langle u,v \rangle$ basis is rotated by $-\theta$ from $\langle e_1, e_2 \rangle$. That is, it is rotated clockwise by $\theta$ since positive rotation is counterclockwise:

Then

$\begin{array}{rl} u & = ( \cos\theta, -\sin\theta ) \\ v & = ( \sin\theta, \cos\theta ) \\ \end{array}$

So $\begin{array}[t]{rl} p_{uv} & = \begin{bmatrix} \cdots u \cdots \\ \cdots v \cdots \end{bmatrix} \begin{bmatrix} \vdots \\ p \\ \vdots \end{bmatrix} \\ & = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \vdots \\ p \\ \vdots \end{bmatrix}\end{array}$

So the standard rotation matrix has in its rows the basis vectors of $p$'s new coordinate system.

Inverse rotations

Let $R_\theta$ be the matrix $\begin{bmatrix} \cdots u \cdots \\ \cdots v \cdots \end{bmatrix}$ that transforms vectors into a new coordinate system, $\langle u, v \rangle$, that is rotated clockwise by $\theta$.

Let $p_{e_1e_2}$ be the vector $p$, above, which is in the $\langle e_1, e_2 \rangle$ coordinate system.

Let $p_{uv}$ be the same vector, but in the $\langle u,v \rangle$ coordinate system.

Then, in matrix notation: $p_{uv} = R_\theta \; p_{e_1e_2}$.

Then, similarly,

$\begin{array}[t]{rl} p_{e_1e_2} & = R_\theta^{-1} \; p_{uv} \\ & = R_\theta^T \; p_{uv} \\ & = \begin{bmatrix} \vdots & \vdots \\ u & v \\ \vdots & \vdots \end{bmatrix} \; p_{uv} \\ & = \begin{bmatrix} \vdots & \vdots \\ u & v \\ \vdots & \vdots \end{bmatrix} \; \begin{bmatrix} a \\ b \end{bmatrix} \qquad \textrm{letting}\ p_{uv} = (a,b)\\ & = a \; u + b \; v \end{array}$

So $p_{uv}$'s transformation back into the $\langle e_1,e_2 \rangle$ basis multiplies the coordinates of $p_{uv}$ by the columns of the matrix $\begin{bmatrix} \vdots & \vdots \\ u & v \\ \vdots & \vdots \end{bmatrix}$.

Higher Dimensions

By thinking of transformations as projections onto basis vectors, we can do exactly the same thing in any dimension. For example, in 3D:

Let $p_{e_1e_2e_3}$ be $p$ in the $\langle e_1, e_2, e_3 \rangle$ coordinate system.

Let $p_{uvw}$ be the same $p$, but in the $\langle u,v,w \rangle$ coordinate system.

Then $p_{uvw} = \begin{bmatrix} \cdots u \cdots \\ \cdots v \cdots \\ \cdots w \cdots \end{bmatrix} \begin{bmatrix} \vdots \\ p_{e_1e_2e_3} \\ \vdots \end{bmatrix}$

And $p_{e_1e_2e_3} = \begin{bmatrix} \vdots & \vdots & \vdots \\ u & v & w \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ p_{uvw} \\ \vdots \end{bmatrix}$

In summary, it's often useful to think of rotation transformations as a projection onto basis (row) vectors, or as a summation of basis (column) vectors.

up to Schedule & Notes