
Fourier Series Example

Let us compute the Fourier series for the function

f(x) = x

on the interval [ − π,π].

f is an odd function, so the an are
zero, and thus the Fourier series will be of the form

f(x) =
n = 1
Σ
∞

bn sin nx.

Furthermore, the bn can be written in closed form.

Using integration by parts,

bn =
π
2��� ∫0

π
x sin nx dx

=
π n 2

2� ������� ( sin nx − nxcos nx) |
0

π

=
π n 2

2� ������� ( sin nπ − nπcos nπ)

= −
n 2 π
2nπ� ������� cos nπ

= −
n
2��� cos nπ.

cos nπ = −1 when n is odd and cos nπ = 1 when n is even.
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Thus the above expression is equal to 2 / n when n is odd and −2 / n
when n is even.

Therefore our Fourier series is

f(x) = 2sin x − sin 2x +
3
2��� sin 3x −

4
2	�	 sin 4x +

5
2
�
 sin 5x − . . . .
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Another Example

let f be a box function defined on [ − π,π] as follows

f(x) =

�
��

1 if | x | ≤ 1.

0 if | x | > 1.

This function contains two discontinuities.

We have arranged for this function to be an even function, so that
its Fourier series is of the form

f(x) =
2

a 0����� +
n = 1
Σ
∞

an cos nx.

Computing the an is easy to do by hand if we simply observe that
f is nonzero only over [−1,+1].

Thus

an =
π
1��� ∫−1

+1
f(x) cos nx, n = 0, 1, 2, . . .

=
π
1��� ∫−1

+1
cos nx

=
nπ

sin nx� ��������� |
−1

+1

=
nπ
2����� sin n.
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Observe that sin n / n → 1 as n → 0.

Our Fourier series is therefore

f(x) =
π
1��� ( 1 +

n = 1
Σ
∞

n
2��� sin n cos nx ).

Four terms:
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The Fourier Transform

The Fourier transform of a function f(x) is defined as

F(ω) = ∫−∞

+∞
f(x) e −iωx dx,

and the inverse Fourier transform of F(ω) is

f(x) =
2π
1����� ∫−∞

+∞
F(ω) e −iωx dω,

where i = √−1 .

F is the spectrum of f.

When f is even or odd, the Fourier transform reduces to the
cosine or sine transform:

Fc(ω) =
π
2��� ∫0

+∞
f(x) cos ωx dx.

Fs(ω) =
π
2��� ∫0

+∞
f(x) sin ωx dx.

These latter two functions can be directly related to the an and
bn terms in a Fourier series.
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Example: a line again

Let f(x) be x when x ∈ [−π,π] and is zero outside this interval.

f odd → f.cos is odd, and so

Fc(ω) = 0.

On the other hand,

Fs(ω) =
π
2��� ∫0

+∞
x sin ωx dx

= 2
πω2

sin xω − xωcos xω��������������������������������� |
x = 0

x = π

= 2
πω2

sin πω − πωcos πω� ������������������������������� .
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Yet another example: a box again

box(x) =

!
"�#

1 if | x | ≤ 1.

0 if | x | > 1.

Then

F(ω) = ∫−∞

+∞
box(x) e −iωx dx

= ∫−1

1
e −iωx dx

= i
ω

e −iωx$ $�$�$�$�$ |
x = −1

x = 1

= i
ω

e −iω%&%�%�%�% − i
ω

e iω'�'�'�' .

Recalling that e −iω = cos ω − isin ω, the cosine terms cancel out,
and since i 2 = −1,

F(ω) = 2
ω

sin ω()(�(�(�(

= 2sinc(ω).
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So, FT(box) = sinc, and the reverse is true too..

Furthermore, if

boxk(x) =

*
+�,

1 if | x | ≤ k.

0 if | x | > k.

Then it is easy to see that

F(ω) = 2
ω

sin (kω)- -�-�-�-�-�-�- .
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Important Theorems

Suppose F(ω) = FT(f ) and G(ω) = FT(g) are the spectra
(i.e., Fourier transforms) of f and g, respectively, assuming they exist.

The convolution theorem states that

FT(f *g) = F G.

In other words, convolution in spatial domain is equivalent to multiplication
in frequency domain.

The analogous theorem called the modulation theorem expresses
the duality of the converse operations:

FT(f g) =
2π
1.�.�. (F*G) .

We therefore have a duality: multiplication of functions in one domain
is equivalent under the Fourier transform to convolution in the other.
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A low-pass filter h is one that, under a convolution with any func-
tion f, admits only the frequencies of f that fall within a specific
bandwidth (i.e., frequency interval) [ − ωh , ωh].

What must the shape of h be in frequency domain? I.e., what is
FT(h)?

What must the shape of h be in spatial domain?

There is only one ideal (family of) low-pass filter for 1-D signals.

How many classes of ideal low-pass filters are there in 2-D?
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The only ideal low-pass filter is a sinc in spatial domain or box in
frequency domain.

signal

sinc

ω

filtered signal

ω

The effect, in frequency domain, of spatial filtering using a sinc filter.
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The Sampling Theorem Revisited

Let f(t) be a band-limited signal. Specifically, let the spectrum
F(ω) of f(t) be such that F(ω) = 0 for | ω | > ωm, for some ‘‘max-
imum frequency’’ ωm > 0.

Let ∆t be the spacing at which we take samples of f(t). Further-
more, we define the circular sampling rate ωs as

ωs =
∆t
2π/�/�/ .

Then f(t) can be uniquely represented by a sequence of samples
f(i∆t), i ∈ Z if

ωs > 2ωm .

I.e., our sampling rate must exceed twice the maximum frequency
of the function.
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Important Fact 1:

f(x) *δ(x − a) = f(x − a).

Convolution with δ creates a copy of f shifted by a units.

Important Fact 2:

Let δε(x) denote a box of half-width ε and of area one centred at
position x = 0.

Let f(x) be a function that is smooth around [−ε,+ε].

Then

f(x) δε(x) ∼∼ f(0) δε(x).

As ε → 0, δε(x) → δ(x),

f(x) δ(x) ∼∼ f(0) δ(x).

This multiplication, has the effect of sampling f at x = 0.

More generally,

f(x) δ(x − a) ∼∼ f(a) δ(x − a),

for an arbitrary a ∈ R.

Thus outside of an integral sign, δ works as a sampling operator.
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Sampling Train

Visualise an infinite sequence of ‘‘impulses’’ or δ-functions, with
one impulse placed at each sampling position i∆T as in

∆ t

i∆ t)(δ

. . . . . .

We can define this sampling train or ‘‘comb’’ of impulses as

s(t) =
i = −∞
Σ
+∞

δ(t − i∆t).

The summation can be thought of the glue that holds a sequence
of impulses together, and because ∆t > 0, the impulses are
spaced so that they do not overlap.
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Sampling Operation

We saw that we could effectively sample a function f at a any
desired position a by placing a δ-function at a and multiplying it
with f.

Therefore, multiplying f with s takes samples of f at our desired
positions:

fs = f s =
i = −∞
Σ
+∞

f(i∆t) δ(t − i∆t).

This new train of ‘‘scaled’’ impulses is:

∆ t

)( fi∆ tδ

. . . . . .

f
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Basic Argument

Suppose f and s have spectra F and S, respectively. Since fs is a
product of two functions f and s, then the modulation theorem
states that its Fourier transform is a convolution:

FT(fs) = Fs(ω) =
2π
10�0�0 F(ω) * S(ω).

For our purposes f , and therefore F, is an arbitrary function.
However, we can compute the spectrum of s.

It indeed turns out that the spectrum of a train of impulses of
spacing ∆t is another train of impulses in frequency domain with
spacing 2π/∆t, which we defined above to be ωs. Formally,

FT(s) = S(ω) =
∆t
2π1�1�1

k = −∞
Σ
+∞

δ(ω − kωs).

We can put this back into our expression for Fs:

Fs =
2π
12�2�2 F(ω) * S(ω)

=
2π
13�3�3 .

∆t
2π4�4�4 F(ω) * (

k = −∞
Σ
+∞

δ(ω − kωs) )

=
∆t
1565�5

k = −∞
Σ
+∞

F(ω − kωs).
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The Argument as a Picture
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We need to prevent overlap of the spectra, for otherwise we’d have no
hope of extracting a single spectrum.

Therefore,

ωm < ωs − ωm .

This implies that

ωs > 2ωm ,

which establishes the theorem.
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How do we get the signal back to the real world?

ωs0ωω -- m ωms

We use a box filter in frequency domain to extract one copy of the
spectrum of F from Fs:

F(ω) = Fs(ω) B(ω),

and by the convolution theorem, we can reconstruct f by convolu-
tion:

f(t) = fs(t) * sincB(t),

where sincB(t) is the inverse Fourier transform of B.

Exercise: Suppose our box B is to have width ωb and height ∆t.
Then show that

sincB(t) =
π

∆tωb787�7�7�7 sinc ( π
ωb t9:9�9�9 ).

So a sinc is both an ideal low-pass filter AND an ideal reconstruc-
tion function (i.e., interpolant).
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Analytic Filtering

One possibility: to filter a signal s with a filter f, rather than com-
pute a convolution, we instead:

; compute Fourier transforms S and F.

< compute SF.

= take the inverse Fourier transform.

Sometimes this even works!

#
# Analytic filtering of signal s with filter f in
# frequency domain.
#
filter := proc(s,f,x)

local S,F,SF,sf,w;
S := evalc(fourier(s,x,w));
F := evalc(fourier(f,x,w)):
SF := S*F: # NOTE: regular multiplication
sf := evalc(invfourier(SF,w,x));

end:
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Analytically Filtering a Polynomial

> p;

(x-2) (x-1.5) (x-1) (x-.5) x (x+.5) (x+1) (x+1.5) (x+2)

> sort(expand(p),x);

9 7 5 3
x - 7.50 x + 17.0625 x - 12.8125 x + 2.2500 x

We can filter p as in the following Maple session.

> Digits := 5: # keep output size manageable

> gauss := 1/(sqrt(2*Pi)*s)*exp(-xˆ2/(2*sˆ2)):

> pg := filter(p,gauss,x):

> collect(sort(collect(pg,x),s),Pi); # make output more readable

9
(3.1416 x

2 7 4 2 5
+ (113.10 s - 23.562) x + (53.605 + 1187.5 s - 494.80 s ) x

2 6 4 3
+ (536.05 s - 40.252 + 3958.4 s - 2474.0 s ) x

2 6 4 8
+ (7.0685 - 120.76 s - 2474.0 s + 804.10 s + 2968.8 s ) x)/Pi
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Graphically, varying the standard deviation
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Summary

If we know that a signal is bandlimited (and we know what that
limit is), then we have a lower bound for the minimum sampling
density.

If the signal is not bandlimited, we can prefilter it into one that is.
Then we can compute the right sampling rate.

But Is It Practical?

In a word, mostly no, sometimes yes, and occasionally, maybe.
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